Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396714

RESUMO

The NAC family of transcription factors (TFs) regulate plant development and abiotic stress. However, the specific function and response mechanism of NAC TFs that increase drought resistance in Picea wilsonii remain largely unknown. In this study, we functionally characterized a member of the PwNAC family known as PwNAC31. PwNAC31 is a nuclear-localized protein with transcriptional activation activity and contains an NAC domain that shows extensive homology with ANAC072 in Arabidopsis. The expression level of PwNAC31 is significantly upregulated under drought and ABA treatments. The heterologous expression of PwNAC31 in atnac072 Arabidopsis mutants enhances the seed vigor and germination rates and restores the hypersensitive phenotype of atnac072 under drought stress, accompanied by the up-regulated expression of drought-responsive genes such as DREB2A (DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2A) and ERD1 (EARLY RESPONSIVE TO DEHYDRATION STRESS 1). Yeast two-hybrid and bimolecular fluorescence complementation assays confirmed that PwNAC31 interacts with DREB2A and ABF3 (ABSCISIC ACID-RESPONSIVE ELEMENT-BINDING FACTOR 3). Yeast one-hybrid and dual-luciferase assays showed that PwNAC31, together with its interaction protein DREB2A, directly regulated the expression of ERD1 by binding to the DRE element of the ERD1 promoter. Collectively, our study provides evidence that PwNAC31 activates ERD1 by interacting with DREB2A to enhance drought tolerance in transgenic Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Resistência à Seca , Picea , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Desidratação/genética , Resistência à Seca/genética , Secas , Regulação da Expressão Gênica de Plantas , Picea/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo
2.
BMC Plant Biol ; 24(1): 15, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163910

RESUMO

BACKGROUND: Kernel dehydration is an important factor for the mechanized harvest in maize. Kernel moisture content (KMC) and kernel dehydration rate (KDR) are important indicators for kernel dehydration. Although quantitative trait loci and genes related to KMC have been identified, where most of them only focus on the KMC at harvest, these are still far from sufficient to explain all genetic variations, and the relevant regulatory mechanisms are still unclear. In this study, we tried to reveal the key proteins and metabolites related to kernel dehydration in proteome and metabolome levels. Moreover, we preliminarily explored the relevant metabolic pathways that affect kernel dehydration combined proteome and metabolome. These results could accelerate the development of further mechanized maize technologies. RESULTS: In this study, three maize inbred lines (KB182, KB207, and KB020) with different KMC and KDR were subjected to proteomic analysis 35, 42, and 49 days after pollination (DAP). In total, 8,358 proteins were quantified, and 2,779 of them were differentially expressed proteins in different inbred lines or at different stages. By comparative analysis, K-means cluster, and weighted gene co-expression network analysis based on the proteome data, some important proteins were identified, which are involved in carbohydrate metabolism, stress and defense response, lipid metabolism, and seed development. Through metabolomics analysis of KB182 and KB020 kernels at 42 DAP, 18 significantly different metabolites, including glucose, fructose, proline, and glycerol, were identified. CONCLUSIONS: In sum, we inferred that kernel dehydration could be regulated through carbohydrate metabolism, antioxidant systems, and late embryogenesis abundant protein and heat shock protein expression, all of which were considered as important regulatory factors during kernel dehydration process. These results shed light on kernel dehydration and provide new insights into developing cultivars with low moisture content.


Assuntos
Desidratação , Zea mays , Zea mays/metabolismo , Desidratação/genética , Proteoma/metabolismo , Proteômica , Locos de Características Quantitativas
3.
Genetica ; 152(1): 1-9, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38102503

RESUMO

Dehydration is a stress factor for organisms inhabiting natural habitats where water is scarce. Thus, it may be expected that species facing arid environments will develop mechanisms that maximize resistance to desiccation. Insects are excellent models for studying the effects of dehydration as well as the mechanisms and processes that prevent water loss since the effect of desiccation is greater due to the higher area/volume ratio than larger animals. Even though physiological and behavioral mechanisms to cope with desiccation are being understood, the genetic basis underlying the mechanisms related to variation in desiccation resistance and the context-dependent effect remain unsolved. Here we analyze the genetic bases of desiccation resistance in Drosophila melanogaster and identify candidate genes that underlie trait variation. Our quantitative genetic analysis of desiccation resistance revealed sexual dimorphism and extensive genetic variation. The phenotype-genotype association analyses (GWAS) identified 71 candidate genes responsible for total phenotypic variation in desiccation resistance. Half of these candidate genes were sex-specific suggesting that the genetic architecture underlying this adaptive trait differs between males and females. Moreover, the public availability of desiccation data analyzed on the same lines but in a different lab allows us to investigate the reliability and repeatability of results obtained in independent screens. Our survey indicates a pervasive micro-environment lab-dependent effect since we did not detect overlap in the sets of genes affecting desiccation resistance identified between labs.


Assuntos
Desidratação , Drosophila melanogaster , Animais , Feminino , Masculino , Drosophila melanogaster/genética , Desidratação/genética , Dessecação , Reprodutibilidade dos Testes , Drosophila/fisiologia , Água
4.
BMC Plant Biol ; 23(1): 617, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049766

RESUMO

BACKGROUND: Neoporphyra haitanensis, a major marine crop native to southern China, grows in the harsh intertidal habitats of rocky coasts. The thallus can tolerate fluctuating and extreme environmental stresses, for example, repeated desiccation/rehydration due to the turning tides. It is also a typical model system for investigating stress tolerance mechanisms in intertidal seaweed. The basic leucine zipper (bZIP) transcription factors play important roles in the regulation of plants' responses to environmental stress stimuli. However, little information is available regarding the bZIP family in the marine crop Nh. haitanensis. RESULTS: We identified 19 bZIP genes in the Nh. haitanensis genome and described their conserved domains. Based on phylogenetic analysis, these 19 NhhbZIP genes, distributed unevenly on the 11 superscaffolds, were divided into four groups. In each group, there were analogous exon/intron numbers and motif compositions, along with diverse exon lengths. Cross-species collinearity analysis indicated that 17 and 9 NhhbZIP genes were orthologous to bZIP genes in Neopyropia yezoensis and Porphyra umbilicalis, respectively. Evidence from RNA sequencing (RNA-seq) data showed that the majority of NhhbZIP genes (73.68%) exhibited transcript abundance in all treatments. Furthermore, genes NN 2, 4 and 5 showed significantly altered expression in response to moderate dehydration, severe dehydration, and rehydration, respectively. Gene co-expression network analysis of the representative genes was carried out, followed by gene set enrichment analysis. Two NhhbZIP genes collectively responding to dehydration and rehydration and their co-expressing genes mainly participated in DNA repair, DNA metabolic process, and regulation of helicase activity. Two specific NhhbZIP genes responding to severe dehydration and their corresponding network genes were mainly involved in macromolecule modification, cellular catabolic process, and transmembrane transport. Three specific NhhbZIP genes responding to rehydration and their co-expression gene networks were mainly involved in the regulation of the cell cycle process and defense response. CONCLUSIONS: This study provides new insights into the structural composition, evolution, and function of the NhhbZIP gene family. Our results will help us to further study the functions of bZIP genes in response to dehydration and rehydration in Nh. haitanensis and improve Nh. haitanensis in southern China.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Rodófitas , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Desidratação/genética , Filogenia , Perfilação da Expressão Gênica , Rodófitas/genética , Estresse Fisiológico/genética , Aclimatação , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
5.
Biosci Biotechnol Biochem ; 87(11): 1316-1322, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37541960

RESUMO

Grisemycin, salinipeptin, and cypemycin belong to the linaridin class of ribosomally synthesized and posttranslationally modified peptides that contain multiple dehydrobutyrine and D-amino acid residues. The biosynthetic gene clusters of these linaridins lack obvious candidate genes for the dehydratase and epimerase required to introduce dehydrobutyrine and D-amino acid residues, respectively. However, we previously demonstrated that the grisemycin (grm) cluster contained cryptic dehydratase and epimerase genes by heterologous expression of this biosynthetic gene cluster in Streptomyces lividans and proposed that two genes (grmH and grmL) with unknown functions catalyze dehydration and epimerization reactions. In this study, we confirmed that both GrmH and GrmL, which were shown to constitute a protein complex by a co-purification experiment, were required to catalyze the dehydration, epimerization, and proteolytic cleavage of a precursor peptide GrmA by in vivo experiments. Furthermore, we demonstrated that GrmH/GrmL complex accepted salinipeptin and cypemycin precursor peptides, which possess three additional amino acids.


Assuntos
Racemases e Epimerases , Streptomyces , Humanos , Racemases e Epimerases/metabolismo , Desidratação/genética , Streptomyces/genética , Peptídeos/química , Aminoácidos/metabolismo , Hidroliases , Família Multigênica
6.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511287

RESUMO

In this study, a transcriptomic analysis of the dehydration rate of mature rice seeds was conducted to explore candidate genes related to the dehydration rate and provide a theoretical basis for breeding and utilization. We selected two rice cultivars for testing (Baghlani Nangarhar, an extremely rapid dehydration genotype, and Saturn, a slow dehydration genotype) based on the results determined by previous studies conducted on the screening of 165 germplasm materials for dehydration rate phenotypes. A rapid dehydration experiment performed on these two types of seeds was conducted. Four comparative groups were set up under control and dehydration conditions. The differentially expressed genes (DEGs) were quantified via transcriptome sequencing and real-time quantitative PCR (RT-qPCR). GO (Gene ontology) and KEGG(Kyoto Encyclopedia of Genes and Genomes) analyses were also conducted. In Baghlani Nangarhar, 53 DEGs were screened, of which 33 were up-regulated and 20 were down-regulated. In Saturn, 25 DEGs were screened, of which 19 were up-regulated and 6 were down-regulated. The results of the GO analysis show that the sites of action of the differentially expressed genes enriched in the rapid dehydration modes are concentrated in the cytoplasm, internal components of the membrane, and nucleosomes. They play regulatory roles in the processes of catalysis, binding, translocation, transcription, protein folding, degradation, and replication. They are also involved in adaptive responses to adverse external environments, such as reactive oxygen species and high temperature. The KEGG analysis showed that protein processing in the endoplasmic reticulum, amino acid biosynthesis, and oxidative phosphorylation were the main metabolic pathways that were enriched. The key differentially expressed genes and the most important metabolic pathways identified in the rapidly and slowly dehydrated genotypes were protein processing in the endoplasmic reticulum and oxidative phosphorylation metabolism. They were presumed to have important regulatory roles in the mechanisms of stress/defense, energy metabolism, protein synthesis/folding, and signal transduction during the dehydration and drying of mature seeds. The results of this study can potentially provide valuable information for further research on the genes and metabolic pathways related to the dehydration rate of mature rice seeds, and provide theoretical guidance for the selection and breeding of new rice germplasm that can be rapidly dehydrated at the mature stage.


Assuntos
Oryza , Transcriptoma , Oryza/genética , Oryza/metabolismo , Desidratação/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sementes/genética
7.
Mol Genet Genomics ; 298(5): 1155-1172, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37338594

RESUMO

In plants, the ability to produce hydrophobic substances that would provide protection from dehydration was required for the transition to land. This genome-wide investigation outlines the evolution of GDSL-type esterase/lipase (GELP) proteins in the moss Physcomitrium patens and suggests possible functions of some genes. GELP proteins play roles in the formation of hydrophobic polymers such as cutin and suberin that protect against dehydration and pathogen attack. GELP proteins are also implicated in processes such as pollen development and seed metabolism and germination. The P. patens GELP gene family comprises 48 genes and 14 pseudogenes. Phylogenetic analysis of all P. patens GELP sequences along with vascular plant GELP proteins with reported functions revealed that the P. patens genes clustered within previously identified A, B and C clades. A duplication model predicting the expansion of the GELP gene family within the P. patens lineage was constructed. Expression analysis combined with phylogenetic analysis suggested candidate genes for functions such as defence against pathogens, cutin metabolism, spore development and spore germination. The presence of relatively fewer GELP genes in P. patens may reduce the occurrence of functional redundancy that complicates the characterization of vascular plant GELP genes. Knockout lines of GELP31, which is highly expressed in sporophytes, were constructed. Gelp31 spores contained amorphous oil bodies and germinated late, suggesting (a) role(s) of GELP31 in lipid metabolism in spore development or germination. Future knockout studies of other candidate GELP genes will further elucidate the relationship between expansion of the family and the ability to withstand the harsh land environment.


Assuntos
Bryopsida , Lipase , Lipase/genética , Lipase/metabolismo , Filogenia , Desidratação/genética , Esterases/genética , Esterases/metabolismo , Bryopsida/genética , Genes de Plantas , Proteínas de Plantas/metabolismo , Esporos
8.
Int J Mol Sci ; 24(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37298675

RESUMO

Drought is among the most challenging environmental restrictions to tomatoes (Solanum lycopersi-cum), which causes dehydration of the tissues and results in massive loss of yield. Breeding for dehydration-tolerant tomatoes is a pressing issue as a result of global climate change that leads to increased duration and frequency of droughts. However, the key genes involved in dehydration response and tolerance in tomato are not widely known, and genes that can be targeted for dehydration-tolerant tomato breeding remains to be discovered. Here, we compared phenotypes and transcriptomic profiles of tomato leaves between control and dehydration conditions. We show that dehydration decreased the relative water content of tomato leaves after 2 h of dehydration treatment; however, it promoted the malondialdehyde (MDA) content and ion leakage ratio after 4 h and 12 h of dehydration, respectively. Moreover, dehydration stress triggered oxidative stress as we detected significant increases in H2O2 and O2- levels. Simultaneously, dehydration enhanced the activities of antioxidant enzymes including peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and phenylalanine ammonia-lyase (PAL). Genome-wide RNA sequencing of tomato leaves treated with or without dehydration (control) identified 8116 and 5670 differentially expressed genes (DEGs) after 2 h and 4 h of dehydration, respectively. These DEGs included genes involved in translation, photosynthesis, stress response, and cytoplasmic translation. We then focused specifically on DEGs annotated as transcription factors (TFs). RNA-seq analysis identified 742 TFs as DEGs by comparing samples dehydrated for 2 h with 0 h control, while among all the DEGs detected after 4 h of dehydration, only 499 of them were TFs. Furthermore, we performed real-time quantitative PCR analyses and validated expression patterns of 31 differentially expressed TFs of NAC, AP2/ERF, MYB, bHLH, bZIP, WRKY, and HB families. In addition, the transcriptomic data revealed that expression levels of six drought-responsive marker genes were upregulated by de-hydration treatment. Collectively, our findings not only provide a solid foundation for further functional characterization of dehydration-responsive TFs in tomatoes but may also benefit the improvement of dehydration/drought tolerance in tomatoes in the future.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Solanum lycopersicum/genética , Desidratação/genética , Desidratação/metabolismo , Peróxido de Hidrogênio/metabolismo , Perfilação da Expressão Gênica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas , Proteínas de Plantas/metabolismo
9.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176147

RESUMO

Drought is a harmful abiotic stress that threatens the growth, development, and yield of rice plants. To cope with drought stress, plants have evolved their diverse and sophisticated stress-tolerance mechanisms by regulating gene expression. Previous genome-wide studies have revealed many rice drought stress-responsive genes that are involved in various forms of metabolism, hormone biosynthesis, and signaling pathways, and transcriptional regulation. However, little is known about the regulation of drought-responsive genes during rehydration after dehydration. In this study, we examined the dynamic gene expression patterns in rice seedling shoots during dehydration and rehydration using RNA-seq analysis. To investigate the transcriptome-wide rice gene expression patterns during dehydration and rehydration, RNA-seq libraries were sequenced and analyzed to identify differentially expressed genes (DEGs). DEGs were classified into five clusters based on their gene expression patterns. The clusters included drought-responsive DEGs that were either rapidly or slowly recovered to control levels by rehydration treatment. Representative DEGs were selected and validated using qRT-PCR. In addition, we performed a detailed analysis of DEGs involved in nitrogen metabolism, phytohormone signaling, and transcriptional regulation. In this study, we revealed that drought-responsive genes were dynamically regulated during rehydration. Moreover, our data showed the potential role of nitrogen metabolism and jasmonic acid signaling during the drought stress response. The transcriptome data in this study could be a useful resource for understanding drought stress responses in rice and provide a valuable gene list for developing drought-resistant crop plants.


Assuntos
Oryza , Transcriptoma , Plântula/metabolismo , Oryza/genética , Oryza/metabolismo , Desidratação/genética , Estresse Fisiológico/genética , Hidratação , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Secas , Perfilação da Expressão Gênica
10.
Funct Integr Genomics ; 23(2): 187, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243818

RESUMO

Engineering drought tolerance in rice needs to focus on regulators that enhance tolerance while boosting plant growth and vigor. The present study delineated the concealed function and tissue-mediated interplay of the miR408/target module in imparting drought stress tolerance in rice. The plant miR408 family comprises three dominant mature forms (21 nt), including a distinct monocot variant (F-7 with 5' C) and is divided into six groups. miR408 majorly cleaves genes belonging to the blue copper protein in addition to several other species-specific targets in plants. Comparative sequence analysis in 4726 rice accessions identified 22 sequence variants (SNP and InDELs) in its promoter (15) and pre-miR408 region. Haplotype analysis of the sequence variants indicated eight haplotypes (three: Japonica-specific and five: Indica-specific) of the miR408 promoter. In drought-tolerant Nagina 22, miR408 follows flag leaf preferential expression. Under drought conditions, its levels are upregulated in flag leaf and roots which seems to be regulated by a differential fraction of methylated cytosines (mCs) in the precursor region. The active pool of miR408 regulated targets under control and drought conditions is impacted by the tissue type. Comparative expression analysis of the miR408/target module under different sets of conditions features 83 targets exhibiting antagonistic expression in rice, out of which 12 genes, including four PLANTACYANINS (OsUCL6, 7, 9 and 30), PIRIN, OsLPR1, OsCHUP1, OsDOF12, OsBGLU1, glycine-rich cell wall gene, OsDUT, and OsERF7, are among the high confidence targets. Further, overexpression of MIR408 in drought-sensitive rice cultivar (PB1) leads to the massive enhancement of vegetative growth in rice with improved ETR and Y(II) and enhanced dehydration stress tolerance. The above results suggest that miR408 is likely to act as a positive regulator of growth and vigor, as well as dehydration stress, making it a potential candidate for engineering drought tolerance in rice.


Assuntos
Oryza , Oryza/metabolismo , Secas , Desidratação/genética , Regiões Promotoras Genéticas , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Sci Rep ; 13(1): 8569, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237176

RESUMO

Plants have evolved mechanisms of adaptation to fluctuations in their environmental conditions that have been given the term "stress memory". Synthetic wheat offers new hope for breeders to restore useful genes lost during the genetic bottleneck. We aimed to test whether drought priming and seed priming could improve drought tolerance in a diverse germplasm of synthetic and common wheat under field conditions. In this research, 27 wheat genotypes (including 20 synthetics, 4 common local and 3 common exotic bread wheat) were field evaluated under four water environments. These treatments included: 1) normal condition (N), plants were irrigated when 40% of the total available soil water was depleted from the root-zone, 2) seed priming-secondary stress (SD2), only water stress was applied at anthesis when 90% of the total available soil water was depleted and seeds were planted for evaluating, 3) primary stress- secondary stress (D1D2), primary water stress was applied at jointing stage when 70% of the total available soil water was depleted then secondary water stress was applied at the anthesis stage when 90% of the total available soil water was depleted, and 4) secondary stress (D2) only water stress was applied at the anthesis when 90% of the total available soil water was depleted. Our results indicated that improved efficient enzymatic antioxidant system leads to less yield reduction in D1D2 treatment. However, the positive effects of drought priming were more pronounced in drought primed (D1D2) than seed primed treatment (SD2). Synthetic wheat genotypes had a significant superiority in terms of yield, yield components and drought tolerance compared to common wheat genotypes. Nevertheless, the response of genotypes to stress memory was very different. Drought sensitive genotypes had better response to stress memory. Superior genotypes were identified as high yield and drought tolerant genotypes which can be used for future studies.


Assuntos
Antioxidantes , Triticum , Triticum/genética , Secas , Desidratação/genética , Solo , Estresse Fisiológico/genética
12.
BMC Genomics ; 24(1): 126, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932328

RESUMO

BACKGROUND: Late embryogenesis abundant (LEA) proteins play an important role in dehydration process of seed maturation. The seeds of Panax notoginseng (Burkill) F. H. Chen are typically characterized with the recalcitrance and are highly sensitive to dehydration. However, it is not very well known about the role of LEA proteins in response to dehydration stress in P. notoginseng seeds. We will perform a genome-wide analysis of the LEA gene family and their transcriptional responses to dehydration stress in recalcitrant P. notoginseng seeds. RESULTS: In this study, 61 LEA genes were identified from the P. notoginseng genome, and they were renamed as PnoLEA. The PnoLEA genes were classified into seven subfamilies based on the phylogenetic relationships, gene structure and conserved domains. The PnoLEA genes family showed relatively few introns and was highly conserved. Unexpectedly, the LEA_6 subfamily was not found, and the LEA_2 subfamily contained 46 (75.4%) members. Within 19 pairs of fragment duplication events, among them 17 pairs were LEA_2 subfamily. In addition, the expression of the PnoLEA genes was obviously induced under dehydration stress, but the germination rate of P. notoginseng seeds decreased as the dehydration time prolonged. CONCLUSIONS: We found that the lack of the LEA_6 subfamily, the expansion of the LEA_2 subfamily and low transcriptional levels of most PnoLEA genes might be implicated in the recalcitrant formation of P. notoginseng seeds. LEA proteins are essential in the response to dehydration stress in recalcitrant seeds, but the protective effect of LEA protein is not efficient. These results could improve our understanding of the function of LEA proteins in the response of dehydration stress and their contributions to the formation of seed recalcitrance.


Assuntos
Panax notoginseng , Panax notoginseng/genética , Panax notoginseng/metabolismo , Desidratação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Sementes/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas
13.
Int J Biol Macromol ; 234: 123757, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36805507

RESUMO

Fibrillin family members play multiple roles in growth, development, and protection against abiotic stress. In this study, we identified 12 potential CaFBNs that are ranging from 25 kDa-42.92 kDa and are mostly basic. These proteins were hydrophilic in nature and generally resided in the chloroplast. The CaFBN genes were located on different chromosomes like 1, 4, 5, and 7. All FBNs shared conserved motifs and possessed a higher number of stress-responsive elements. For evolutionary analysis, a phylogenetic tree of CaFBNs with other plants' FBNs was constructed and clustered into 11 FBN subgroups. For expression analysis, 21 day old chickpea seedling was exposed to dehydration stress by withholding water. We also performed various physiological and biochemical analyses to check that plant changes at the physiological and cellular levels while undergoing stress conditions. The transcript expression of CaFBNs was higher in aerial parts, especially in stems and leaves. Dehydration-specific transcriptome and qPCR analysis showed that FBN-1, FBN-2, and FBN-6 were highly expressed. In addition, our study provides a comprehensive overview of the FBN protein family and their importance during the dehydration stress condition in Cicer arietinum.


Assuntos
Cicer , Cicer/genética , Cicer/metabolismo , Filogenia , Secas , Fibrilinas/genética , Fibrilinas/metabolismo , Desidratação/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
14.
BMC Plant Biol ; 23(1): 17, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36617566

RESUMO

BACKGROUND: Iris lactea var. chinensis, a perennial herbaceous species, is widely distributed and has good drought tolerance traits. However, there is little information in public databases concerning this herb, so it is difficult to understand the mechanism underlying its drought tolerance. RESULTS: In this study, we used Illumina sequencing technology to conduct an RNA sequencing (RNA-seq) analysis of I. lactea var. chinensis plants under water-stressed conditions and rehydration to explore the potential mechanisms involved in plant drought tolerance. The resulting de novo assembled transcriptome revealed 126,979 unigenes, of which 44,247 were successfully annotated. Among these, 1187 differentially expressed genes (DEGs) were identified from a comparison of the water-stressed treatment and the control (CK) treatment (T/CK); there were 481 upregulated genes and 706 downregulated genes. Additionally, 275 DEGs were identified in the comparison of the rehydration treatment and the water-stressed treatment (R/T). Based on Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) analysis, the expression levels of eight randomly selected unigenes were consistent with the transcriptomic data under water-stressed and rehydration treatment, as well as in the CK. According to Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, proline metabolism-related DEGs, including those involved in the 'proline catabolic process', the 'proline metabolic process', and 'arginine and proline metabolism', may play important roles in plant drought tolerance. Additionally, these DEGs encoded 43 transcription factors (TFs), 46 transporters, and 22 reactive oxygen species (ROS)-scavenging system-related proteins. Biochemical analysis and histochemical detection showed that proline and ROS were accumulated under water-stressed conditions, which is consistent with the result of the transcriptomic analysis. CONCLUSIONS: In summary, our transcriptomic data revealed that the drought tolerance of I. lactea var. chinensis depends on proline metabolism, the action of TFs and transporters, and a strong ROS-scavenging system. The related genes found in this study could help us understand the mechanisms underlying the drought tolerance of I. lactea var. chinensis.


Assuntos
Iris (Planta) , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Iris (Planta)/genética , Iris (Planta)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resistência à Seca , Estresse Fisiológico/genética , Transcriptoma , Perfilação da Expressão Gênica , Desidratação/genética , Sequenciamento de Nucleotídeos em Larga Escala , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Secas
15.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555312

RESUMO

Aging is a complex biological process, resulting in gradual and progressive decline in structure and function in many organ systems. Our objective is to determine if structural changes produced by aging vary with sex in a stressful situation such as dehydration. The expression of Slc12a3 mRNA in the renal cortex, α-smooth muscle actin (α-SMA), and fibronectin was evaluated in male and female rats, aged 3 and 18 months, submitted and not submitted to water deprivation (WD) for 48 h, respectively. When comparing ages, 18-month-old males showed a lower expression of Slc12a3 mRNA than 3-month-old males, and control and WD 18-month-old male and female rats exhibited a higher expression of α-SMA than the respective 3-month-old rats. Fibronectin was higher in both control and WD 18-month-old males than the respective 3-month-old males. In females, only the control 18-month-old rats showed higher fibronectin than the control 3-month-old rats. When we compared sex, control and WD 3-month-old female rats had a lower expression of Slc12a3 mRNA than the respective males. The WD 18-month-old male rats presented a higher expression of fibronectin and α-SMA than the WD 18-month-old female rats. When we compared hydric conditions, the WD 18-month-old males displayed a lower relative expression of Slc12a3 mRNA and higher α-SMA expression than the control 18-month-old males. Aging, sex, and dehydration lead to alterations in kidney structure.


Assuntos
Desidratação , Fibronectinas , Rim , Animais , Feminino , Masculino , Ratos , Envelhecimento/genética , Desidratação/genética , Fibronectinas/genética , Rim/patologia , RNA Mensageiro/genética , Privação de Água
16.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36555363

RESUMO

Early responsive dehydration (ERD) genes can be rapidly induced by dehydration. ERD15 genes have been confirmed to regulate various stress responses in plants. However, the maize ERD15 members have not been characterized. In the present study, a total of five ZmERD15 genes were identified from the maize genome and named ZmERD15a, ZmERD15b, ZmERD15c, ZmERD15d, and ZmERD15e. Subsequently, their protein properties, gene structure and duplication, chromosomal location, cis-acting elements, subcellular localization, expression pattern, and over-expression in yeast were analyzed. The results showed that the ZmERD15 proteins were characterized by a similar size (113-159 aa) and contained a common domain structure, with PAM2 and adjacent PAE1 motifs followed by an acidic region. The ZmERD15 proteins exhibited a close phylogenetic relationship with OsERD15s from rice. Five ZmERD15 genes were distributed on maize chromosomes 2, 6, 7, and 9 and showed a different exon-intron organization and were expanded by duplication. Besides, the promoter region of the ZmERD15s contained abundant cis-acting elements that are known to be responsive to stress and hormones. Subcellular localization showed that ZmERD15b and ZmERD15c were localized in the nucleus. ZmERD15a and ZmERD15e were localized in the nucleus and cytoplasm. ZmERD15d was localized in the nucleus and cell membrane. The results of the quantitative real-time PCR (qRT-PCR) showed that the expression of the ZmERD15 genes was regulated by PEG, salinity, and ABA. The heterologous expression of ZmERD15a, ZmERD15b, ZmERD15c, and ZmERD15d significantly enhanced salt tolerance in yeast. In summary, a comprehensive analysis of ZmERD15s was conducted in the study. The results will provide insights into further dissecting the biological function and molecular mechanism of ZmERD15s regulating of the stress response in maize.


Assuntos
Saccharomyces cerevisiae , Zea mays , Zea mays/genética , Zea mays/metabolismo , Regiões Promotoras Genéticas , Filogenia , Saccharomyces cerevisiae/metabolismo , Desidratação/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
17.
Sci Rep ; 12(1): 20482, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443382

RESUMO

Synthetic hexaploid wheat-derived lines (SHW-DL) offers new hope for breeders to restore genes lost during the evolutionary bottleneck. The study of adaptability, variation, and the possibility of selection in SHW-DL for drought tolerance is poorly understood in arid environments. The potential of 184 SHW-DL and their variation for agro-morphological traits were assessed under normal and water stress conditions for 2 years. The mean values of grain yield (YLD) varied from 683.9 g/m2 (water stress) to 992.1 g/m2 (normal conditions). Grain yield decreased by 64 and 71% under water stress in the two growing seasons. High genotypic variation was found for measured traits and drought tolerance. Heritability ranged from 19 (harvest index) to 47% (spike length), whereas grain yield indicated a moderate heritability (32%). Using the assessment of the interrelationship of traits, hectoliter (a quality trait) was correlated with drought tolerance and stability indices. Therefore, it can be considered as an important trait to select drought tolerant genotypes. In the following, the priority of yield components entering the regression model was different in two moisture conditions suggesting different strategies in indirect selection programs to improve yield. Spike m-2 and grain spike-1 indirectly and negatively affected yield through thousand-grain weight (TGW) under normal and water stress conditions, respectively. Furthermore, SHW-DL compared to ordinary wheat were significantly superior in terms of early maturity, dwarfing, yield, TGW, stem diameter, and harvest index. Overall, our findings suggest that SHW-DL are a valuable source for improving wheat yield and drought tolerance, and indirect selection might be possible to improve these complex traits.


Assuntos
Desidratação , Secas , Desidratação/genética , Poaceae , Triticum/genética , Grão Comestível
18.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430379

RESUMO

Potato (Solanum tuberosum L.) is one of the most important crops worldwide, but due to its sensitivity to drought, its production can be affected by water availability. In this study, the varieties Agria and Zorba were used to determine the expression differences between control and water-stressed plants. For this purpose, they were sequenced by RNAseq, obtaining around 50 million transcripts for each variety and treatment. When comparing the significant transcripts obtained from control and drought-stressed plants of the Agria variety, we detected 931 genes that were upregulated and 2077 genes that were downregulated under stress conditions. When both treatments were compared in Zorba plants, 735 genes were found to be upregulated and 923 genes were found to be downregulated. Significantly more DEGs were found in the Agria variety, indicating a good stress response of this variety. "Abscisic acid and environmental stress-inducible protein TAS14-like" was the most overexpressed gene under drought conditions in both varieties, but expression differences were also found in numerous transcription factors and heat shock proteins. The principal GO term found was "cellular components", more specifically related to the cell membrane and the cell wall, but other metabolic pathways such as carbohydrate metabolism and osmotic adjustment were also identified. These results provide valuable information related to the molecular mechanisms of tolerance to water stress in order to establish the basis for breeding new, more tolerant varieties.


Assuntos
Solanum tuberosum , Solanum tuberosum/metabolismo , Desidratação/genética , Tetraploidia , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Perfilação da Expressão Gênica
19.
Sci Rep ; 12(1): 19599, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380055

RESUMO

Isodon rubescens (Hemsley) H. Hara (Lamiaceae) is a traditional Chinese medicine plant that has been used to treat various human diseases. Oridonin is one of the main active ingredients, and the route of its molecular biosynthesis remains to be determined. The study of gene expression patterns can provide clues toward the understanding of its biological functions. The selection of suitable reference genes for normalizing target gene expression is the first steps in any quantitative real-time PCR (RT-qPCR) gene expression study. Therefore, validation of suitable reference genes is necessary for obtaining reliable results in RT-qPCR analyses of I. rubescens. Here, 12 candidate reference genes were chosen, and their expression stability in different tissues of I. rubescens and in leaves under different abiotic stresses (NaCl, dehydration, SA, MeJA, and ABA) was evaluated using the ∆Ct, NormFinder, GeNorm, BestKeeper, and RankAggreg statistical tools. Analysis using the comprehensive tools of RankAggreg algorithm showed that GADPH, 18S and eIF were stably expressed in different tissues; UBQ, Apt, and HIS; Cycl, UBQ, and PP2A; GADPH, 18S, and eIF; eIF, UBQ, and PP2A; TUB, Cycl, and UBQ; were the best three candidate reference genes for the samples of Dehydration, NaCl, SA, MeJA, and ABA treatment, respectively. While for the concatenated sets of ND (NaCl and dehydration) and SMA (SA, MeJA, and ABA), UBQ, HIS, and TUA; UBQ, eIF and Apt were the three appropriate candidate reference genes, respectively. In addition, the expression patterns of HMGR in different tissues and under different treatments were used to confirm the reliability of the selected reference genes, indicating that the use of an inappropriate reference gene as the internal control will cause results with a large deviation. This work is the first study on the expression stability of reference genes in I. rubescens and will be particularly useful for gene functional research in this species.


Assuntos
Genes de Plantas , Isodon , Humanos , Cloreto de Sódio , Reprodutibilidade dos Testes , Desidratação/genética , Estresse Fisiológico/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Expressão Gênica , Algoritmos , Padrões de Referência , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas
20.
Plant Physiol ; 190(4): 2557-2578, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36135793

RESUMO

Water availability influences all aspects of plant growth and development; however, most studies of plant responses to drought have focused on vegetative organs, notably roots and leaves. Far less is known about the molecular bases of drought acclimation responses in fruits, which are complex organs with distinct tissue types. To obtain a more comprehensive picture of the molecular mechanisms governing fruit development under drought, we profiled the transcriptomes of a spectrum of fruit tissues from tomato (Solanum lycopersicum), spanning early growth through ripening and collected from plants grown under varying intensities of water stress. In addition, we compared transcriptional changes in fruit with those in leaves to highlight different and conserved transcriptome signatures in vegetative and reproductive organs. We observed extensive and diverse genetic reprogramming in different fruit tissues and leaves, each associated with a unique response to drought acclimation. These included major transcriptional shifts in the placenta of growing fruit and in the seeds of ripe fruit related to cell growth and epigenetic regulation, respectively. Changes in metabolic and hormonal pathways, such as those related to starch, carotenoids, jasmonic acid, and ethylene metabolism, were associated with distinct fruit tissues and developmental stages. Gene coexpression network analysis provided further insights into the tissue-specific regulation of distinct responses to water stress. Our data highlight the spatiotemporal specificity of drought responses in tomato fruit and indicate known and unrevealed molecular regulatory mechanisms involved in drought acclimation, during both vegetative and reproductive stages of development.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Frutas/metabolismo , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Desidratação/genética , Desidratação/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Epigênese Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...